Monte Carlo Estimation of the Solution of Fractional Partial Differential Equations
نویسندگان
چکیده
The paper is devoted to the numerical solutions of fractional PDEs based on its probabilistic interpretation, that is, we construct approximate via certain Monte Carlo simulations. main results represent upper bound errors between exact solution and approximation, estimate fluctuation appropriate central limit theorem (CLT) construction confidence intervals. Moreover, provide rates convergence in CLT Berry-Esseen type bounds. Concrete computations illustrations are included.
منابع مشابه
Exact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملApproximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملOn the Numerical Solution of Fractional Hyperbolic Partial Differential Equations
The stable difference scheme for the numerical solution of the mixed problem for the multidimensional fractional hyperbolic equation is presented. Stability estimates for the solution of this difference scheme and for the first and second orders difference derivatives are obtained. A procedure of modified Gauss elimination method is used for solving this difference scheme in the case of one-dim...
متن کاملOn the Numerical Solution of Fractional Partial Differential Equations
In this paper, a technique generally known as meshless method is presented for solving fractional partial differential equations (FPDEs). Some physical linear and nonlinear experiments such as time-fractional convective-diffusion equation, timefractional wave equation and nonlinear space-fractional Fisher's equation are considered. We present the advantages of using the radial basis functions (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2021
ISSN: ['1311-0454', '1314-2224']
DOI: https://doi.org/10.1515/fca-2021-0012